- MATH BASICS

 for the Health Care Professional | Fifth Edition

MATH BASICS for the Health Care Professional I Fift Edtion

Michele Benjamin Lesmeister, MA Renton Technical College

Renton, Washington

Vice President, Health Science and TED: Julie Levin Alexander
Director of Portfolio Management: Marlene McHugh Pratt
Portfolio Manager: Derril Trakalo
Development Editor: Jill Rembetski
Portfolio Management Assistant: Emily Edling
Vice President, Content Production and Digital Studio: Paul DeLuca
Managing Producer, Health Science: Melissa Bashe
Content Producer: Faye Gemmellaro
Project Monitor: Meghan DeMaio
Operations Specialist: Mary Ann Gloriande
Creative Director: Blair Brown
Creative Digital Lead: Mary Siener
Managing Producer, Digital Studio, Health Science: Amy Peltier
Digital Studio Producer, REVEL and e-text 2.0: Ellen Viganola
Digital Content Team Lead: Brian Prybella
Digital Content Project Lead: Christian Lee
Vice President, Product Marketing: David Gesell
Field Marketing Manager: Brittany Hammond
Full-Service Project Management and Composition: SPi Global
Full-Service Project Manager: Benjamin Gilbert
Inventory Manager: Vatche Demirdjian
Interior and Cover Design: Laurie Entringer
Cover Art (top to bottom): Shanghainese/Shutterstock; Adul10/Shutterstock; Megaflopp/Shutterstock
Printer/Binder: LSC Communications, Inc.
Cover Printer: Phoenix Color/Hagerstown

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate page within text.

Copyright © 2018, 2016, 2014 Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights \& Permissions department, please visit www.pearsoned.com/permissions/.

Library of Congress Cataloging-in-Publication Data

Names: Benjamin-Lesmeister, Michele, author.
Title: Math basics for the health care professional / Michele Benjamin Lesmeister, MA.
Description: Fifth edition. | Renton, Washington : Renton Technical College, [2017] | Includes index.
Identifiers: LCCN 2017020614 | ISBN 9780134703695
Subjects: LCSH: Medicine—Mathematics. | Mathematics. | Medical sciences.
Classification: LCC R853.M3 B46 2017 | DDC 610.1/5195—dc23
LC record available at https:/ /lcen.loc.gov/2017020614

Dedication

Special appreciation to Albert Lesmeister for supporting my academic endeavors to help students.

This page intentionally left blank

Contents

Preface for Educators and Learners ix
Health Occupations Matrix of Math Skills and Pre-Test xv
Math for Health Care Professionals Pre-Test xvii

Unit 1
 Whole Number Review 1

Pre-Test 1
Whole Numbers 3
Integers 7
Symbols and Number Statements 7
Addition 8
Subtraction 10
Multiplication 12
Prime Factorization 13
Division 15
Solving for the Unknown Number with Basic Mathematics 18
Rounding 20
Estimation 21
Basics of Statistical Analysis 22
Arithmetic Mean or Average 22
Median 24
Mode 25
Range 26
Time in Allied Health 27
How to Convert to Universal Time 28
Critical Thinking with Whole Numbers 29
Whole Number Post-Test 30

Unit 2

Fractions 32

Pre-Test 32
Part-to-Whole Relationships 34
Understanding the Numerator to Denominator Relationship 36
Equivalent Fractions 37

Reducing to Lowest or Simplest Terms 39
Multiplication Method 39
Division Method 39
Improper Fractions 42
Adding Fractions with Like Denominators 43
Finding the Common Denominator 45
Difficult Common Denominators 48
Ordering Fractions 51
Subtraction of Fractions 52
Borrowing in Subtraction of Fractions 53
Multiplication of Fractions 57
Multiplying a Fraction by a Whole Number 58
Reducing Before You Multiply as a Timesaver 59
Multiplication of Mixed Numbers 61
Division of Fractions 65
Converting Temperatures Using Fraction Formulas 68
Complex Fractions 70
Measurement in Fractions 73
Critical Thinking with Fractions 76
Fraction Post-Test 79

Unit 3

Decimals 81

Pre-Test 81

Decimals 83
Rounding Decimals 86
Comparing Decimals 87
Addition of Decimals 90
Subtraction of Decimals 91
Multiplication of Decimals 93
Division of Decimals 95
Zeros as Placeholders in Decimal Division 96

Simplified Multiplication and Division of Decimals 98
Simplified Multiplication 98
Simplified Division 100
Changing Decimals to Fractions 101
Changing Fractions to Decimals 104
Temperature Conversions with Decimals 105
Decimal Conversion Formula 105
Solving Mixed Fraction and Decimal Problems 107
Critical Thinking Using Decimals 109
Decimal Post-Test 111

Unit 4
 The Metric System 112

Pre-Test 112
Using the Metric Symbols 115
Changing Unit Measures 117
Critical Thinking Using the Metric System 124
Metric System Post-Test 126

Unit 5
 Ratio and Proportion 128

Pre-Test 128
Ratio 130
Ratios in Health Care 132
Unit Rates 134
Proportion 134
Solving for $x 135$
Using Proportions and Metric Units to Measure Dental Stone 140
Word Problems Using Proportions 142
Solving for x in More Complex Problems Using Proportion 144
Nutritional Application of Proportions 146
Practice with Food Labels 148
Critical Thinking with Ratio and Proportion 151
Ratio and Proportion Post-Test 152

Unit 6
 Measurement Conversion 154

Pre-Test 154
Converting with Measurements 157
Household or Standard Measurement 158
Standard Units of Measure 159
Apothecary System Units 159
More Combined Applications 163

Critical Thinking for Converting among Measurement Systems 166
Measurement Conversions Post-Test 168

Unit 7
 Percents 171

Pre-Test 171

Percent-to-Decimal Conversion 173
Decimal-to-Percent Conversion 174
Using Proportion to Solve Percent Problems 175
Percent Problems in Health Care 176
Complex Percent Problems 177
Percent Change 179
Percent Strength of Solutions 181
Using Proportion to Convert Solutions 182
Critical Thinking in Percent 185
Percent Post-Test 187

Unit 8
 Combined Applications 189

Pre-Test 189
Conversions among Fractions, Decimals, Ratios, and Percents 190

Converting to Fractions, Decimals, Ratios, and Percents 192
Critical Thinking with Combined Applications 195
Combined Applications Post-Test 197

Unit 9
 Pre-Algebra Basics 199

Pre-Test 199
Integers 200
Absolute Value 202
Integer Operations 203
Adding Integers with Like Signs 203
Adding Integers with Unlike Signs 204
Subtracting Integers 206
Multiplication of Integers 207
Division of Integers 208
Exponential Notation 209
Square Roots 210
Order of Operations 210
Algebraic Expressions 212
Expressions 212
Writing Expressions from Word Problems 216
Solving Equations 217

Writing Equations from Word Problems 218
Critical Thinking with Pre-Algebra Basics 220
Pre-Algebra Basics Post-Test 222
Unit 10
Reading Drug Labels, Medicine Cups, Syringes, and Intravenous Fluid Administration Bags 223

Pre-Test 223
Medication Labels 226
Medicine Cups 232
Syringes 233
IV Bags 237
Critical Thinking with Reading Drug Labels, Medicine Cups, Syringes, and IV Fluid Administration Bags 238
Reading Drug Labels, Medicine Cups, Syringes, and IV Fluid Administration Bags Post-Test 240

Unit 11
 Apothecary Measurement and Conversion 243

Pre-Test 243
Apothecary Measurement and Conversions 245
Multiple Conversions 249
Converting Liquid Equivalents 251
Rounding in Dosage Calculations 255
Critical Thinking in Apothecary System 257
Apothecary System Post-Test 260

Unit 12
 Dosage Calculations 262

Pre-Test 262
Performing Dosage Calculations 264
Dimensional Analysis 267
Using Drug Labels to Calculate Dosages 271
Critical Thinking in Dosage Calculations 274
Dosage Calculations Post-Test 277
Unit 13
Parenteral Dosage 280
Pre-Test 280
Injections 283

Syringes 283
IM Injection Guidelines 284
Units of Measures 284
Critical Thinking in Parenteral Dosages 289
Parenteral Dosage Post-Test 292

Unit 14
 The Basics of Intravenous Fluid Administration 295

Pre-Test 295
IV Infusion Sets 297
Calculating IV Infusion Rates with a Formula 298
Working Through the Formula 299
Calculating IV Infusion Rates with Dimensional Analysis 299
Modified Setup 302
Infusion Duration 304
Calculating Total Volume 306
Critical Thinking with Intravenous Fluid Administration 308
The Basics of Intravenous Fluid Administration Post-Test 309

Unit 15
Basic Dosage by Body Weight 311

Pre-Test 311
Conversion to Kilograms 313
Using Dimensional Analysis 313
Converting Pounds and Ounces 314
Calculating Dosage 315
Using Special Formulas for Dosage by Weight 320
Critical Thinking with Basic Dosage by Body Weight 322
Basic Dosage by Body Weight Post-Test 324

Appendix A: Comprehensive Post-Test 326
Answers for the Post-Test 332
Appendix B: Practice Tests Units 1-15 334
Answers Key for Practice Exams 1-15 363
Appendix C: Answer Key 369
Appendix D: Dimensional Analysis 397
Answers Key for Appendix D 418
Appendix E: Student Resources for Math 414
Index 433

This page intentionally left blank

Preface for Educators and Learners

Math Basics for the Health Care Professional was written to serve a large population of learners preparing for careers within health occupations as well as those working toward employment upgrades in the field. Suggested specific applications of this work text are high school vocational programs; adult education programs that prepare students for health fields; self-study by individuals preparing for workplace transitions, upgrades, or changes; pre-nursing studies; in-house or on-the-job training programs; and a general brush-up for work in the health care professions. The work text was designed with student success in mind. The context is geared toward allied health students, and this contextualization helps students appreciate the value of learning math for success in their future health care careers.

The text begins with a comprehensive pre-test to gauge students' abilities and areas where remediation is required. The 15 units in the text cover the following topics: whole number review; fractions; decimals; metric measurement; ratio and proportion; measurement conversions; percents; combined applications; prealgebra basics; reading drug labels, medicine cups, syringes, and intravenous fluid administration bags; apothecary measurement and conversion; dosage calculations; parenteral dosages; basic intravenous fluid administration; and basic dosage by body weight. Each unit provides a 15 -question pre-test for additional practice in self-assessment, followed by a concept review and instruction, examples, practice problems, critical thinking questions, and a post-test. Students will find the answers to the odd-numbered practice problems in Appendix C. In addition, extra practice units are included in Appendix B, and Appendix A contains a comprehensive post-test.

A Focus on Adult Learners

The materials in this work text have been successfully applied to help students prepare for a wide variety of health care training fields at a technical college. Students' feedback and input have played a prominent role in the design and sequencing of the content, teaching methods, and presentation. Thus, the text's organization is central to students' success. The students who have worked through these materials have been successful in their vocational training and workplace upgrading because they have reached a mastery level in the fundamental concepts, making them ready to learn the additional concepts and applications of their specific training areas.

This work text focuses on the needs of adult learners and features the following learner-based tools for success:

- Sequential skill building on basic math skills
- Ties between the application of the skill and each math concept
- Mnemonic devices to build memory of the basic skills
- A variety of practice opportunities with occupation-based examples and problems
- Mixed applications to build on basic skills and promote critical thinking
- Post-tests to promote confidence and skill building
- Critical thinking applications to increase application and skill building
- White space in the design for thinking and working through the problems

New to This Edition

This fifth edition continues to provide a basic mathematics approach as well as dimensional analysis for all the application units. An appendix that is focused exclusively on dimensional analysis provides students further instruction on and examples of this sometimes challenging concept. Another appendix includes student resources, such as graphic organizers and other tools that provide additional support and strategies for learning and working in math.

The fifth edition of this work text has been updated to include the following features and changes:

- Updated unit (chapter) organization now places metric measurement content after decimal content for improved flow
- New information on the different classes or schedules of drugs
- Reduced use of apothecary measurements such as minims and units
- Large illustrations to help students visualize and solve problems
- New location of the metric conversions and additional graphics to assist in memorizing the conversions
- New unit on measurement conversions
- Updated drug labels to meet industry standards and changes
- Addition of Clark's, Young's and Fried's Rules to the Basic Dosage by Body Weight unit
- Full-color design that includes room for students to work out math problems

About the Author

Michele Benjamin Lesmeister has more than 40 years of experience teaching a wide variety of adults including second-language learners, industry experts, college preparatory students, public agency personnel, and other faculty. She embraces the attitude that all students can learn math. Furthermore, she believes that a student's success is often tied to the presentation of materials. Therefore, the colloquial quality of this text's explanations of math processes creates a can-do approach to and image of math. In health care, math is a necessary job skill; math proficiency, in turn, will lead to more job opportunities.

Supplements

The Instructor's Resource Manual has reproducible tests that accompany the work text as a ready test bank on which instructors can rely. The unit tests (two per unit) ask the student to perform math calculations similar to those in the units. These unit tests each require 25 answers; thus, the tests do not overwhelm the student, but promote self-reliance and confidence-building in math.

Two post-tests, which ask students to supply a total of 50 answers, are included.

Pearson's MyLab for Health Professions (access code required) is a comprehensive online program that gives the student the opportunity to test his or her understanding of information and concepts and allows the instructor to see how well the student knows the material. From the test results, MyLab builds a selfpaced, personalized study plan unique to the student's needs. The student can work through the program until the study plan is complete and he or she has mastered the content.

TestGen allows instructors to design customized quizzes and exams. The TestGen wizard guides instructors through the steps to create a simple test with drag-and-drop or point-and-click transfer. Instructors can select test questions either manually or randomly and use online spell-checking and other tools to quickly polish the test content and presentation. Instructors can save the test in a variety of formats both locally and on a network, print up to 25 variations of a single test, and publish the tests in an online course.

PowerPoint lectures contain key discussion points, along with color images, for each chapter. This feature provides dynamic, fully designed, integrated lectures that are ready to use and allows instructors to customize the materials to meet their specific course needs. These ready-made lectures will save instructors time and ease the transition into use of this resource.

Reviewers

I would like to thank the reviewers of this book for their suggestions, comments, and encouragement, all of which are greatly appreciated. These reviewers include:

Peter Andrus, MD

Albany Medical College
Albany, New York
Michele Bach, MS
Kansas City Kansas Community College
Kansas City, Kansas
Lynnae Lockett, RN, RMA, CMRS, MSN
Bryant \& Stratton College
Parma, Ohio
Pilar Perez-Jackson, CPhT, RPhT
Sanford Brown Institute
Iselin, New Jersey
Helen Reid, EdD, RN, CNE, FAADN
Trinity Valley Community College
Kaufman, Texas
Paula D. Silver, BS Biology, PharmD
College of Health Science, ECPI University
Newport News, Virginia
Reviewers from the Previous Edition
Jennifer M. L. Bunker, BA ESE-Ed
ATA Career EducationSpring Hill, Florida
Robert E. Fanger, BS HCM, MS Ed
Del Mar College
Corpus Christi, Texas
Thomas D. Flaherty, Jr., BS, MEE, EdD
Quinsigamond Community College
Worcester, Massachusetts
Sally L. Haith-Glenn, RMA, AHI, MBA-HCM
Virginia College
Greensboro, North Carolina
Liz Hoffman, MA Ed, CMA (AAMA), CPT (ASPT)
Baker College
Clinton Township, Michigan
Kim Ingram, MA, CRC
Houston Community College
Houston, TexasHelen Reid, EdD, MSN, RN, CNETrinity Valley Community College
Kaufman, Texas
Richard Witt, R Ph
Allegany College of Maryland
Cumberland, Maryland

This page intentionally left blank

Health Occupations Matrix of Math Skills and Pre-Test

Each health care field has its own emphasis on and requirements for math skills. Many successful adults search out materials that serve their immediate learning needs because their studies are just one part of their busy days. This work text has been designed to help you measure your readiness for additional math training in and for your specific field.

To assist individuals new to health occupations, a matrix of skills has been developed to answer the question: What math do I need to know to be a \qquad ? Refer to the matrix to obtain a general idea of the math skills necessary for your program preparation or workplace upgrade. These skills will form the core of your math abilities, and you will build on them in more specific ways within your specific field of study.

Once you understand what math skills you need for success in the program, you are ready to take the self-assessment. This tool is divided into categories that match the work text content to help you work independently or with your classmates; it also allows you to begin at your own comfort or skill level. The idea behind the self-assessment is to provide enough review and practice so that you are able to solve the problems for your program accurately and efficiently. Use the scoring sheet to prepare an individualized study plan for yourself or as a sheet to refer to when these units are covered to ensure that you have mastered the material.

By completing this work text, you will be ready for the specific math training that you will receive in your program of study or in the workplace.

A final word about calculators: Calculators are wonderful tools. However, calculator use may be limited to certain class situations, and calculator use may or may not be allowed on exams. For these reasons, mental math is a valuable skill to review. When you put your calculator away before you work through these materials, two things will result: Your proficiency will increase, and your self-confidence will soar, as you become an efficient math problem-solver.

	MATRIX OF SKILLS										
						Surgical Technologist					
Practice Pre-Test	X	X	X	X	X	X	X	X	X	X	
Unit 1: Whole Number Review	x	x	x	x	x	x	x	x	x	X	
Unit 2: Fractions	x	x	x	x	x	x	x	x	x	x	
Unit 3: Decimals	X	X	X	X	x	X	x	X	x	X	
Unit 4: Metric Measurement	X	X	x	x	x	X	x	X	x	X	
Unit 5: Ratio and Proportion	x	X	X	X	X	X	x	X	X	X	
Unit 6: Measurement Conversions	x	X	x	x	x	X	x	x	x	X	
Unit 7: Percents	x	X	X	x	x	X	x	x	x	x	
Unit 8: Combined Applications	x	X	x	x	x	X	x	x	x		
Unit 9: Pre-Algebra Basics	X	X	X	X	X	X	x	X	X	X	
Unit 10: Reading Drug Labels, Medicine Cups, Syringes, and Intravenous Fluid Administration Bags	x	X	x	x	x	x	x	x	X	x	
Unit 11: Apothecary Measurement and Conversion					x		x	x	x		
Unit 12: Dosage Calculations					x		x	x	x		
Unit 13: Parenteral Dosage					X		X	X	X		
Unit 14: The Basics of Intravenous Fluid Administration					X		X	X	X		
Unit 15: Basic Dosage by Body Weight					x		x	X	x		
Practice Post-Test	x	X	x	x	X	x	X	X	X		

The Math Basics for the Health Care Professional Pre-Test is provided on the next several pages. The pre-test is designed to highlight the major points in each of the 15 units. Some of these skills may be familiar to you, while others may be new topics that you'll need to study.

Math Basics for the Health Care Professional Pre-Test
 Whole Number Skills

1. Find the mean of the set of numbers: $16,10,5,9,10,7,3,20$ \qquad
2. $609+$ \qquad $+37=812$
3. $1876-618=$ \qquad
4. $34 \times 97=$ \qquad
5. $2 6 \longdiv { 3 2 4 } =$ \qquad
6. The heights of Michele's family members are 67 inches, 81 inches, 69 inches, 70 inches, and 68 inches. Find the range in height of Michele's family members. \qquad
7. Convert 3:15 p.M. Standard time to Universal time.

Fraction Skills

8. Order the fractions from smallest to largest: $\frac{7}{8}, \frac{5}{6}, \frac{1}{4}, \frac{3}{4}$ \qquad
9. $30 \frac{3}{5}+12+3 \frac{5}{6}=$ \qquad
10. $46 \frac{1}{3}-8 \frac{7}{12}=$ \qquad
11. $3 \frac{4}{5} \times \frac{3}{7} \times 5=$ \qquad
12. $7 \frac{1}{6} \div \frac{1}{2}=$ \qquad
13. Solve: $\frac{\frac{1}{20}}{\frac{1}{4}}=$ \qquad

Decimal Skills

14. Express as a fraction: 8.022
15. Express as a decimal: $6 \frac{7}{8}$ \qquad
16. $10.6+0.5+9=$ \qquad
17. $59.3-5.65=$ \qquad
18. $0.6 \times 31.2=$ \qquad
19. $228.06 \div 0.4=$ \qquad

Metric Measurement Skills

20. 129.45 micrograms $=$ \qquad milligrams
21. 94 grams $=$ \qquad kilogram. Round to the nearest tenth.

Ratio and Proportion Skills

22. A container holds 54 milliliters of medication. How many full 1.25 milliliter doses can be administered from this container? \qquad
23. Solve: $6: 75:: 2.5: x$

$$
x=
$$

\qquad
24. Solve: $7: x:: 42: 200$

$$
x=
$$

\qquad Write the answer as a mixed number.
25. Solve: $\frac{1}{4}: 8:: x: 72$

$$
x=
$$

\qquad
26. Solve: $\frac{1}{50}: 5:: \frac{10}{250}: x$

$$
x=
$$

\qquad
27. Simplify the ratio to its lowest terms: $2 \frac{1}{2}: 3$ \qquad

Measurement Conversion

28. $3 \frac{1}{4}$ feet $=$ \qquad inches
29. \qquad quarts $=12$ pints
30. 15 pounds $=$ \qquad kilograms
31. \qquad teaspoons $=30$ milliliters

Percent Skills

32. What is $11 \frac{3}{4} \%$ of 55 ? \qquad Round to the nearest tenth.
33. What percent is 22 of 144 ? \qquad Round to the nearest hundredth.
34. Sixteen percent of 140 is what number? \qquad
35. The original price of a new nursing jacket is $\$ 42.50$. Add 9.8% tax to the cost of the jacket. What is the total cost? \qquad
36. There are 5 grams of pure drug in 65 mL of solution. What is the percent strength of the solution? \qquad

Combined Applications Skills

37. Convert 0.5% to a fraction. \qquad
38. Convert $3 \frac{1}{2}$ to a percent. \qquad
39. Convert 18 to a percent. \qquad
40. Write 1.001 as a fraction. \qquad
41. Write 0.07% as a decimal. \qquad

Pre-Algebra Skills

42. $45+(-10)=$ \qquad
43. $-12-42=$ \qquad
44. $-63 \div 9=$ \qquad
45. $-128 \times(-4)=$ \qquad
46. $32+\sqrt{144}=$ \qquad
47. $\left(5^{2}-3^{2}\right) \div 5=$ \qquad

Reading Drug Labels, Medicine Cups, and Syringes

48. Complete the table for this drug label. If the information is not provided, write Not shown.
Each tablet contains:
nebivolol hydrochloride $|$

Practice Label
Generic name \qquad
Trade name \qquad
Manufacturer \qquad
National Drug Code (NDC) number \qquad
Lot number (control number)
Drug form \qquad
Dosage strength \qquad
Usual adult dose \qquad
Total amount in vial, packet, box \qquad
Prescription warning \qquad
Expiration date
49. The medical assistant was asked to dispense 14 milliliters of a liquid medication. Shade the medicine cup to indicate this dosage.

50. The physician has ordered an intramuscular (IM) injection of 1.8 milliliters. Shade the syringe to indicate this volume of medication.

Apothecary Measurement Skills

51. fluid ounces $18=$ \qquad milliliters
52. 16 teaspoons $=$ \qquad milliliters
53. 3 pints $=$ \qquad milliliters
54. 0.5 milligrams $=$ grain \qquad
55. grain $\frac{1}{300}=$ \qquad milligrams
56. 3 grams $=$ grains \qquad
57. $3 \frac{1}{2}$ teaspoons $=$ \qquad milliliters

Oral Medication Skills

58. Desired: Aspirin 1.5 grams every 4 hours

Available: Aspirin 500 milligram scored tablets
Give:
59. The patient is prescribed Vistaril 20 milligrams orally every 6 hours for nausea relief. You have on hand Vistaril oral suspension 5 milligrams in 2.5 milliliters.

You administer \qquad .

Dosage Calculation Skills

60. Ordered: Zocor 40 milligrams

Have: Zocor 20 milligrams per tablet
Give: \qquad
61. The doctor has ordered Zyloprim 0.25 gram orally twice a day. On hand is Zyloprim 100 milligram scored tablets. The nurse should give \qquad .
62. The client receives an order for Augmentin 250 milligrams. The Augmentin label reads 125 milligrams in 5 milliliters. The client will be given
\qquad .

Parenteral Dosage Skills

63. The physician orders megestrol acetate 800 milligrams per day. The megestrol acetate label reads oral suspension 40 milligrams per milliliter. Give: \qquad .
64. Give Dilaudid 0.5 milligram IM from a vial that is labeled 4 milligrams per milliliter. Give: \qquad . Round to the nearest hundredth.
65. Ordered: Atropine sulfate 0.5 milligram IM Have: Atropine sulfate 0.3 milligram per milliliter Give: \qquad Round to the nearest hundredth.
66. The doctor prescribes heparin 3500 units sub- Q four times a day. You have heparin 2500 units per milliliter. You give \qquad .
67. Ordered: Quinidine 0.4 grams orally every 4 hours. Quinidine is supplied in 200 milligram tablets. How many tablets will you give? \qquad

Calculating IV Dosage Skills

68. The patient with oliguria has an order for 75 milliliters of 0.9% Normal Saline (NS) over 2 hours. The drop factor is 15 drops per milliliter (gtts $/ \mathrm{mL}$). How many drops per minute should be given? \qquad
69. The nurse receives an order that reads 1200 milliliters 5% dextrose water $\left(\mathrm{D}_{5} \mathrm{~W}\right)$ intravenous (IV) at 150 milliliters per hour. The nurse should infuse for \qquad _.
70. The nurse will administer an IV solution at 115 milliliters per hour for 12 hours. What will the total volume infused be? \qquad

Basic Dosage by Body Weight Skills

Perform the calculations to determine whether the following prescription is a therapeutic dosage for this child:

Ordered medication: ABC 5 milligrams orally every 12 hours for a child weighing 14 pounds. You have medication ABC 15 milligrams per milliliter. The recommended daily oral dosage for a child is 2.5 milligrams per kilogram per day in divided doses every 12 hours.

> Medication ABC Oral Solution $15 \mathrm{mg} / \mathrm{mL}$
71. This child's weight is \qquad kilograms.
72. What is the recommended dosage for this child? \qquad milligrams per day

Weight:
Ordered dosage:
34 pounds 6 ounces
1.4 milligrams per kilogram per day
Recommended dosage from drug label: 3 milligrams every 8 hours
73. What is the daily dose? \qquad
74. What is the individual dose? \qquad
75. Does the ordered dose match the recommended dosage? \qquad

Answers to Pre-Test

1. 10
2. 166
3. 1258
4. 3298
5. 12.46 or 12 R 12 or $12 \frac{6}{13}$
6. 14
7. 1515
8. $\frac{1}{4}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}$
9. $46 \frac{13}{30}$
10. $37 \frac{3}{4}$
11. $8 \frac{1}{7}$
12. $14 \frac{1}{3}$ or 14 R 1 or 14.33
13. $\frac{1}{5}$
14. $8 \frac{11}{500}$
15. 6.875
16. 20.1
17. 53.65
18. 18.72
19. 570.15
20. 0.12945 mg
21. 0.1 mg
22. 43
23.

Generic name

Trade name
Manufacturer
National Drug Code (NDC) number
Lot number (control number)
Drug form
Dosage strength
Usual adult dose
Total amount in vial, packet, box
Prescription warning
Expiration date
23. 31.25
24. $33 \frac{1}{3}$
25. 2.25
26. 10
27. $5: 6$
28. 39
29. 6
30. 6.8
31. 6
32. 6.5
33. 15.28
34. 22.4
35. $\$ 46.67$
36. 7.7\%
37. $\frac{1}{200}$
38. 350%
39. 1800%
40. $1 \frac{1}{1000}$
41. 0.0007
42. 35
43. -54
44. -7
45. 512
46. 44
47. 3.2 or $3 \frac{1}{5}$
nebivolol
Not shown
PL Pharmaceuticals, Inc.
0456-1402-01
Not shown
Tablets
2.5 milligrams

Not shown; see package insert
100 tablets
Rx only
Not shown
49. 14 milliliters of a liquid medication

50. 1.8 milliliters. Shade the syringe to indicate this volume of medication.

51. 540
52. 80
53. 1500
54. $\frac{1}{200}$
55. 0.2
56. 50
57. 17.5
58. 3 tablets
59. 10 milliliters
60. 2 tablets
61. $2 \frac{1}{2}$ tablets
62. 10 milliliters
63. 20 milliliters
64. 0.13 milliliter
65. 1.67 milliliters
66. 1.4 milliliters
67. 2 tablets
68. 9 drops per minute
69. 8 hours
70. 1380 milliliters
71. 6.36
72. 15.9
73. 21.88 milligrams per day
74. 7.29 milligrams per dose
75. No, the physician should be contacted for clarification.

This page intentionally left blank

UNIT
 1

Whole Number Review

Student Learning Outcomes

After completing the tasks in this unit, you will be able to:

1-1 Use symbols to complete a math statement
1-2 Write number statements
1-3 Find the sum of whole numbers
1-4 Subtract whole numbers
1-5 Multiply whole numbers
1-6 Factor whole numbers
1-7 Divide whole numbers
1-8 Solve for the unknown in whole number operations

1-9 Round to specific place value
1-10 Estimate using whole numbers
1-11 Calculate an arithmetic mean, median, mode, and range
1-12 Convert between standard time and military
time
1-13 Apply whole numbers to critical thinking exercises

Pre-Test

1. $48+\ldots+123=188$
2. $2,008-199=$
3. $49 \times 127=$
4. $1,530 \div 6=$
5. Draw a factor tree for 324 .
6. Round 15,875 to the nearest tens place.
7. Round 2,893 to the nearest hundreds.
8. Sally is a dental assistant who works a variable schedule. During the month of December, she has averaged the following weekly total hours of work: 28 hours, 32 hours, 24 hours, and 40 hours. What is the mean or the average number of hours she has worked each week during the month of December?
9. Find the median for the chemistry data set: $12,37,15,19,20,42,18,6,10$
10. Patients at the Village Central Rehabilitation Center, Wing B, are the following ages: $18,28,47,98,81,83,87,31,38,56,76,69$. What is the range of patient ages for the residents in Wing B?
11. Write a number statement for the relationship of 7 and -7 .
12. Convert 12:23 p.m. to Universal or military time.
13. Read the number: 108,273 . The place value of the underlined digit is
\qquad -.
14. A dental assistant needs 192 hours of clinical practical work. The dental assistant has completed 89 hours; how many hours remain to fulfill the clinical requirement?
15. A patient's weight is fluctuating. The patient initially weighed 198 pounds, then he lost 13 pounds, only to gain another 7 , and lose another 3 . What is his new weight?

Overview

Mathematics is a key skill of health care workers. As a health care worker, you know that accuracy is important. Being competent in whole number concepts and addition, subtraction, multiplication, and division will form the basis for successful computations on the job. These basic skills form the foundation for the other daily math functions you will use in the workplace.

Whole Numbers

REVIEW

What is a whole number? A whole number is a positive number. Whole numbers do not include a fraction or a decimal. We use whole numbers in our everyday lives to add calories, count medicine capsules, calculate wages, arrive at a total cost of a purchase, and measure our weight in pounds. Math is used in the health care setting, and whole numbers and the operations of addition, subtraction, multiplication, and division form the basis for excellence in health care math.

As health care professionals we need to be aware of the information conveyed through whole numbers. These numbers are used in meaningful ways to convey important information. For example, whole numbers appear on over-the-counter drug packaging to show specific information.

The packet below notes that these are 12-hour tablets and that there are a total of 12 tablets in the package.
> loratadine $\begin{aligned} & p-12 \\ & \text { Hour }\end{aligned}$

12 Tablets
$5 \mathrm{mg} / 120 \mathrm{mg}$
12 extended release tablets

Rx only
12 Tablets

P PL

\downarrow Pharmaceuticals

Loratadine $5 \mathrm{mg} /$ Antihistamine Pseudoephedrine Sulfate $120 \mathrm{mg} /$ Nasal Decongestant

NON-DROWSY*
ALLERGY \& SINUS RELIEF:

- Sneezing • Runny Nose
- Itchy, Watery Eyes • Sinus Pressure
- Nasel Congestion

Cold Symptom Relief for:

- Nasal Congestion • Sinus Pressure
*When taken as directed.
See Drug Facts Panel.

Practice Label

The label for tussin on the next page provides different types of information. This medicine is for children 12 years and older; the bottle contains 4 fluid ounces or 118 milliliters of medication.

Practice Label
Other whole numbers also appear on prescription drug labels such as the National Drug Code (NDC) number, temperature for storage instructions, and other company identifying numbers such as lot number and expiration date.

When we are aware of these whole numbers, we see they are meaningful.

		NDC 0078-0371-05 Rx only	Dosage: See package insert. Store at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right.$); excursions permitted to $15^{\circ}-30^{\circ} \mathrm{C}\left(59^{\circ}-86^{\circ} \mathrm{F}\right)$. Dispense in tight container (USP). Store this and all drugs out of the reach of children.	
		Ritalin LA ${ }^{\circ}$ (methylphenidate HCl) extended-release capsules 30 mg		
		30 mg	Manufactured for Novartis Pharmaceuticals Corp. East Hanover, New Jersey 07936 by Alkermes Gainesville LLC Gainesville, GA 30504	
		100 capsules		
		Dispense with Medication Guide attached or provided		
$\underset{\underset{\sim}{x}}{\substack{0 \\ \hline}}$		separately. 少 novartis	ONovartis	5003438
P Pharmaceuticals				

Practice Label

Practice 1

Brainstorm: List at least 10 uses of whole numbers in the health care field.

1. \qquad 3. \qquad
2. \qquad 4. \qquad
3.
4. \qquad
5. \qquad 10. \qquad

We are surrounded by numbers in almost every aspect of our lives. Let's look at the prevalence of whole numbers in the context of health care.

Practice 2

Circle the whole numbers in the figures below and note what information is provided by them.

doxazosin mesylate	*Each tablet contains doxazosin mesylate equivalent to 4 mg doxazosin.																								
100 Tablets																									
4 mg*	DOSAGE AND USE: See accompanying prescribing information.																								
	Store below $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right.$).																								
	CAUTION: Federal law prohibits dispensing without prescription.																								
100 Tablets \| NDC 0049-2770-66	\|																								
\| P Pharmaceuticals 0304	$3 \underset{05-4540-32-3}{0049-2770-66}$																								

40 mL of $1: 40$ acetic acid (solution)

Integers

Whole numbers and their opposites are called integers. For example, 7 and -7 are integers, and they are opposite numbers. We often use a number line to visualize integers and their relationships with other integers. The number line is a line labeled with the integers in increasing order from left to right. The number line extends in both directions:

Remember that any integer is always greater than the integer to its left. In negative numbers, the closer a negative number is to 0 on the number line, the larger the number is. For example, -3 is larger than -19 because -3 is closer to 0 on the number line than -19 is.

Symbols and Number Statements

REVIEW

Symbols may be used to show the relationship among numbers. Symbols are important in creating math statements and relationships.

Symbol	Meaning	Example
$=$	is equal to	$1+7=8$
$>$	is greater than	$19>6$
$<$	is less than	$5<12$
\leq	is equal to or less than	age ≤ 5
\geq	is equal to or greater than	weight ≥ 110 pounds

A number statement or simple equation shows the relationship between numbers, operations, and/or symbols.

Practice 3

Use the symbols ($=,>,<, \leq$, and \geq) to complete the number statement.

1. 44 \qquad 34
2. -5 \qquad -17
3. 12 \qquad -7
4. 12:00 р.м. \qquad noon
5. Seven less than 4 \qquad the numbers $-5,-4,-3$
6. $\$ 2.00$ \qquad 2 hundred pennies
7. 235 \qquad 187
8. 2 nickels \qquad a quarter
9. 245 \qquad $78+34+3$
10. One dollar +2 quarters \qquad \$1.35
11. The numbers $0,1,2$, are \qquad the number 2
12. 3 \qquad $4 \div 2$

Practice 4

Write five number statements of your own.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad

Addition

SET-UP HINT

Line up the addition problem according to the value of each digit (from the smallest digit to the largest) and then work left.

Remember to
carry your extra digit to the next place value to the left.

REVIEW

Addition involves finding a total, or sum, by combining two or more numbers. To add, line up numbers in a vertical column and add them to find the total. These numbers are lined up by place value. In addition problems, the total, or answer, is called the sum.

Practice 5

Find the sum of each problem.

1. $7+8+10+9=$ \qquad
2. $21+47=$ \qquad
3. $1,297+90+102+5=$ \qquad
4. $916+897=$
5. $1,773+233+57=$ \qquad
6. $9+245+32=$ \qquad
7. $11+357+86+34=$ \qquad
8. $24,578+9,075=$
9. $443+2,087+134=$ \qquad
10. $910+3+125=$ \qquad

Practice 6

Inventory is an important clerical function in the health care industry. Supply technicians, clerks, nursing assistants, or other staff will sometimes perform this work. Keeping accurate inventory reduces overstocking and helps avoid the problem of understocking medical supplies.
Find the sum of each addition problem.

1. The Golden Years Care Center performs a monthly inventory. Find the sum for each category.

Category

Sum
a. Examination gloves: $31+88+47+$ two boxes of 50 \qquad
b. Thermometer covers: $281+304+17+109$
c. Medicine cups: $313+245+106+500+12$
\qquad
d. Boxes of disposable syringes (50 per box): $2+6+9+3$
2. Intake and output totals require addition skills. Unlike household measurements, which are measured in cups, health care patient intake and output units are measured in milliliters (mL). Intake includes oral ingestion of fluids and semi-liquid food, intravenous feedings, and tubal feedings. Find the intake totals.

Type of Intake

a. Oral
b. Intravenous
c. Blood
d.

Milliliters (mL)
120, 210, 150, 240
250, 500
500

The intake sums would be charted in the patient's medical record.
3. Measuring output is important because it helps the health care worker ensure a patient's health and hydration. Output is measured in milliliters. Cubic centimeters were formerly used and may still appear on occasion; however, the metric units of milliliter or liter are the standard units of measure for volume today. Output includes liquid bowel movements or diarrhea, urine, emesis (vomiting), and gastric drainage. Find the output totals.

